WEBINAR STARTS AT 14:00

agilysis

MACHINE LEARNING BRUCE WALTON & CRAIG SMITH

WEBINAR SUPPORT

- Please use the Q&A Section to ask questions – we will answer as many as we can
- This is being recorded and will be available to review shortly
- The PDF slides are also available

- Covers a lot of different techniques and algorithms
- We can't cover all of them in a 30minute webinar
- So we will focus on a flexible framework that serves as the basis of many Al algorithms and techniques: *artificial neural networks*

INTRODUCTION

- •What are neural networks and why do they work?
- What sort of things can we use them for?
 Where do I start if I want to do this?

agilysis

agilysis

agilysis

agilysis

agilysis.co.uk

Weights

agilysis

agilysis

agilysis.co.uk

WHAT IS A NEURAL NETWORK?

• *Sigmoid* activation builds the model out of curvy pieces

• *Relu* activation builds the model out of piecewise-linear pieces

 Linear activation builds the model out of linear pieces (hence is linear)

WHAT CAN WE USE THEM FOR?

Regression models

agilysis.co.uk

(NON-LINEAR) REGRESSION

- Use a combination of discrete and continuous input variables
- Predicting continuous output values
- Interpolate data to cover blackspots
- Can have issues with extrapolation

- Use historic STATS19 collision data, matched to a granular road network to calculate measures of risk:
 - Collisions per km of road
 - Collisions per vehicle-km travelled
 - Pedal cyclist collisions per km
 - Pedal cyclist collisions per cyclist-km travelled
 - Pedestrian collisions per km
- Match this to data on road infrastructure, local environment, and usage provided by Transport for London

- Train a Neural Network to predict observed measures of risk using this data on road infrastructure, local environment, and usage
- The result is a piecewise-linear function on the space of infrastructure, environment and usage data
- Values for each road segment correlate with observed risk
- The outputs of this function are measures of *Road Danger*

agilysis

agilysis.co.uk

agilysis

WHAT CAN WE USE THEM FOR?

- Regression models
- Classification models

MIDAS COLLISION DETECTION

- The **MIDAS** network is a collection of sensors across strategic roads in England, collecting minute-by-minute data on speed, flow and headway for each lane
- This project matched these sensors to STATS19 collisions to investigate the extent to which collision effects are visible within MIDAS data

agilysis.co.uk

MIDAS COLLISION DETECTION

- The following parameters were used for selecting collisions
 - Multi-vehicle collisions only
 - Occurring between 6 AM and 10 PM
 - Unambiguously located on a specific carriageway, not on slip road
- The M1 was chosen as the study site and 2016 as the year
 - Choice was driven by data quality
 - Only 215 (54%) of in-scope 2016 M1 collisions had complete MIDAS data available
- All collisions in scope were matched to the nearest *preceding* MIDAS sensor, to capture changes in vehicle behaviour leading up to the scene of the collision both before and after it occurred

MIDAS COLLISION DETECTION

- Multiple two hour periods of MIDAS data were extracted using the RAC Foundation's R package *oneminutetrafficdata*
 - Some were the hour immediately preceding and immediately following a reported collision
 - Others were random comparator periods, between 6 AM and 10 PM on days when no collisions were reported at that location
- Data was only taken for lanes 1 and 2, to account for variation in the number of lanes at each sensor point
- Sensor points are about 300 meters apart on average
- Some datasets were incomplete

CONCLUSIONS

- The neural network could accurately recognise MIDAS data that was not associated with a collision, especially using flow data (100% success)
- The neural network was **more likely miss** a collision than it was to identify non-collisions as collisions falsely
- The best factor to use in training a neural network to recognise collisions is **flow** (with a 93% success rate), closely followed by **speed** (which was 89% successful)
- However, training using both seemed **reduce** the model's accuracy
- The neural network **struggled** to recognise patterns in **headway data** that indicated collisions

agilysis

SAMPLE FLOW PROFILES

WHAT CAN WE USE THEM FOR?

agilysis

- Regression models
- Classification models
- Anomaly/rare event detection

ANOMALY DETECTION

ANOMALY DETECTION

ANOMALY DETECTION

- Exploring the potential of using this to detect the conditions that are likely to precede a collisions in HE's minute-by-minute MIDAS sensor data
- More generally can be used to remove outliers from datasets
- Or as the basis for "unsupervised learning"...

WHAT CAN WE USE THEM FOR?

agilysis

- •Regression models
- Classification models
- Anomaly/rare event detection
- Unsupervised learning/classification

UNSUPERVISED LEARNING

te)ing Intelligently neoded rithm Clustered ate Data ariables

Input Data

HANCS AND FINDING COMPARATORS

- We work alongside local authorities to analyse their collision data and determine what their biggest road safety issues are
- Only makes sense when compared against *similar* authorities
- Not enough to settle for *similar* meaning nearby
- Similarity should be data driven, and based on factors such as network density, rurality, population density, deprivation levels and socio-demographics
- The HANCS model uses unsupervised learning to cluster authorities into groups based on the level of similarity

HANCS AND FINDING COMPARATORS Cluster 2_5

agilysis

WHAT CAN WE USE THEM FOR?

agilysis

- •Regression models
- Classification models
- Anomaly/rare event detection
- Unsupervised learning/classification
- Image recognition and object detection

agilysis.co.uk

IMAGE RECOGNITION

Convolutional Layers

000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
00000	00000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	00000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	00000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000	000000000000000000

ю	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0
Ó	04	00	0	Ó	0	Ó	0	Ô	0	Ó	0	0	0	0	Ó	0	0	0	0	0	0	0
0	0(00	0	ò	õ	ò	0	0	0	0	0	0	0	Q	0	0	0	0	ò	õ	0	Ģ
0	00	20	0	õ	õ	õ	0	õ	0	0	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	0	Ö.
2	29	20	2	õ	õ	2	2	2	2	2	2	õ	2	õ	õ	2	2	õ	õ	2	2	g.
2	23	20	2	×	×	2	×	2	2	×	×	×	×	×	2	×	ž	×	×	2	2	8
×	X	šŏ	X	ž	X	ž	X	X	X	X	X	X	ă	X	X	ă	X	X	X	X	X.	č.
ŏ	ŏ	õõ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ă
ŏ	õ	õõ	õ	õ	õ	õ	õ	õ	õ	ŏ	õ	õ	õ	õ	õ	õ	ŏ	õ	ŏ	ŏ	ŏ	ă
Ö	Q.	00	0	õ	ō	õ	ō	ō	Ö	õ	Ö	õ	ō	ō	õ	õ	ō	õ	ō	õ	Ö	Ö
0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	00	0	0	0	0	0	0	0	0	0	0	0	õ	0	õ	0	0	0	0	0	Q
2	21	20	0	õ	õ	õ	õ	õ	0	õ	0	õ	õ	õ	õ	õ	õ	õ	õ	0	2	0
2	23	20	2	2	2	2	g	2	2	8	2	X	2	2	8	2	2	X	2	2	23	8
X	22	56	X	×	×	×	×	ž	X	X	ă	×	X	ž	×	X	X	X	X	×	2	ä.
ŏ	č?	ŏŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	č	ă.
õ	õ	õõ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	ā
Ó	01	00	Ó	Õ	Ó	õ	õ	Ô	ö	Ó	Ó	ò	Ô	Ô	õ	ò	Ô	õ	õ	õ	Ö	Ö.
0	04	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	00	20	0	õ	õ	õ	õ	0	0	0	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	0	Ö.
2	29	20	0	õ	2	2	õ	2	õ	õ	2	2	õ	2	õ	õ	2	õ	õ	2	2	ŭ.

Pooling Layers

IMAGE RECOGNITION

IMAGE RECOGNITION

RAPIER

- Road assessments can be hugely beneficial in determining how best to create a safe system
- A lot of these require manual coding of road features, which can be costly and time consuming
- This limits impact

- Long term goal to use machine learning techniques to programmatically code road infrastructure on the network using a combination of satellite imagery and video recorded by vehicles
- Used in combination with models that determine risk levels based on the coded infrastructure agilysis.co.uk

agilysis

WHAT CAN WE USE THEM FOR?

agilysis

- Regression models
- Classification models
- Anomaly/rare event detection
- Unsupervised learning/classification
- Image recognition and object detection
- •Art

AI ART

DEEP DREAMING

BRUCE WALTON DR CRAIG SMITH

+44 1295 731810 bruce.walton@agilysis.co.uk craig.smith@agilysis.co.uk